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Symmetries of highly excited atomic hydrogen: Quadratic Zeeman splitting distorted
by fine-structure effects
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Using the classical mechanical perturbation approach and semiclassical quantization rules we explain the
spectrum of atomic hydrogen in a weak magnetic field in which fine structure of levels cannot be neglected.
The general pattern of the spectrum turns out to be very different from the nonrelativistic scheme. In particular,
we point out the presence of another type of “exponentially narrow” doup8t050-2947®8)07609-4

PACS numbgps): 31.15.Gy, 31.15.Md, 31.30.Jv, 32.640.

INTRODUCTION I. BASIC ASSUMPTIONS

The Hamiltonian of the system can be written as
The presence of discrete symmetry in a quantum system
often leads to the appearance of extremely narrow multiplets
in the energy spectrum. The usual example is two symmetric
communicating wells when the lower part of the spectrum
consists of “exponentially narrow” doublets. In the semi- HereV4,= (y?/8)(x?+Yy?) is the diamagnetic interaction,
classical approach it can be attributed to the presence of twis the magnetic field in atomic unitsyE1 corresponds to
symmetric phase trajectories of the corresponding classic&=2.35<10° T), o, is thez component of the doubled spin
system. operatoro, andV, is the Pauli operator of the relativistic
A more interesting case is the highly excited hydrogencorrections comprising “the mass on velocity dependence,
atom in a magnetic field of suitable strength. The specifi¢he spin-orbit interaction, and the Darwin contact interaction:
properties of this problem have been discovered in experi-
ments on hydrogenlike spectra of alkali-metal atohg] Vrel= Vimasst Vsot Vparw:
and on hydrogen prop¢8,4], and in numerical calculations
[5-7]. A semiclassical theory underlying the observed ef- Vo oo (E—U)Z__ (E+1/r)?
fects is described if8—13]; for details and complete bibli- mass ™ 2c2 202
ography, see the reviewd4-14. The phase space of this
system possesses symmetry that also leads to exponentially

H=H©+ %(Lﬁ 02) Vit Vel @

narrow doublets in the so-called “vibrational part” of the VSOZL E(mL):— - (o-L),
spectrum. 4¢?r or 4c?r3
In this paper we consider the same system. But the mag-
netic field is assumed to be weaker so that the diamagnetic 1 -
splitting is comparable with the fine structure of the unper- VDarWZQVZU = 2—(:25(”-

turbed atom. Relativistic effects conserve the above-
mentioned symmetry and it seems unlikely that they will
lead to essentially new effects.

Nevertheless, we will show that the hydrogen atom in
magnetic field possesses yet another symmetry. The latt

does not lead to any interesting phenomena in the nonrela- (i). The spin and the orbital movements are uncoupled.

tivistic situation. However, when the relativistic effects areThis means that the first-order Zeeman splitting induced by
present it gives birth to another type of doublet. Here Wehe operatorH M= (y/2)(L,+ o) is much larger than the
analyze the dynamical symmetry origin of these doublets anne structure. or

other peculiar relativistic distortions of the quadratic Zeeman
spectra in the atomic hydrogen. We give a physical explana-

There are three perturbations present in @.their rela-
tive impact depends on the field strength and the extent of
tl‘r1e atomic excitation. We will make the following assump-

N

tion of the earlier results dfL9] where the discrete Wentzel- e
Kramers-Brillouin-Jeffreys(WKBJ) method was used to 2 nd
solve the quantum perturbation theory equations of the prob-
lem. where « is the fine-structure constanty is the principal
quantum number of the atomic state under consideration (
>1).
*Electronic address: arbatsky@snoopy.phys.spbu.ru (i) The first-order (paramagnetic Zeeman splitting is
Electronic address: braun@niif.spb.su large compared with the second orddramagnetit one, or
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FIG. 1. Spectrum of the Hamiltonian as a
function of parametet=32E*/c?w? for n=25,
m=5, o,=1. Left-hand side corresponds %
=0, right-hand side corresponds §& +°. The
caseé= +x is, of course, unattainable in reality
(see Sec.)l Solid and dashed thick lines corre-
spond to even and odd levels. Thin lines border
regions with different symmetry and topology of
level surfaces of a classical Hamiltonian.

y 5y%n* with fixed n, m, o, and all possiblé. HereR,,, stands for
7= the nonrelativistic radial wave function of the atomic hydro-
gen andu(o,) is the spin function.

It may be argued that, since there is degeneracy of the
el (3) with respect to the spin projection

(iii) The diamagnetic splitting is much smaller than the
energy interval between adjacent shells in the unperturbe%v

atom, or
1 1) _ (1
u,<<—. EI(’T‘I(Z'_EI(’TP)FZO'Z,—U'Z’
Y n3
(iv) The diamagnetic splitting is comparable with the fine mixing of states witho,=1 ando,= —1 must be taken into
structure, or account. However, the relativistic correction operator can
a? change the orbital angular momentum projectianby no
u,~ F 2 more than 1; thus such mixing cannot take place in the first

_ _ order byV,,. Thus in the first order of perturbation theory
The first and the second of these assumptions guaranteége operator of the spin-orbit interactidfy, can be replaced

that the orbitql angular momentum comppn@.gtis CoN-  hy a simpler operatoV.= — (1/4cr3) oL, whereo, is a
served. The third assumption means that mixing between difx

ferent shells of the atom can be neglected and a good ¢ n_IL_Jrr]‘nber. toN- h | lassical . In the clas-
guantum number. Finally, Ed2) means that the magnetic . € operatolVs, has clear classical meaning. 'n e clas
field is weaker than that usually considered in the theory 0§|cal limit n— o It pecomes a usughot operatorélfungtpn
the second-order Zeeman effect; in such fields the relativistig?f dynamical variables. The operator,,ss comprising

effects compete with the field-induced splitting completely. me:css or:hveIOC|tybdependen_c|:_ﬁ rgls a cleartclats_SIEal mt.ea”'
modifying it in some case&ee below. ing from the very beginning. The Darwin contact interaction

Vpaw Will be excluded from consideration here because it is
substantial only ifL,=0 (the caseL,=0 is more compli-
cated and will not be analyzed hgr&hus we are left with

The paramagnetic operator splits the IeEé{f’z —1/2n2  three perturbations onlW g, Viass andVe,.
of the nonrelativistic unperturbed atom into a set of equidis- Numerically calculated splitting produced by the relativ-
tant levels with the spacing/2: istic and diamagnetic interactions is shown in Fig. 1.

Il. QUANTUM PERTURBATION THEORY

Y
Efno,= 5 (Mm+oy), () Ill. CLASSICAL PERTURBATION THEORY

whereo,= * 1 is the spin quantum number. These levels are In the classical model the electron of the unperturbed hy-
still degenerate. drogen atom moves along a Kepler orbit. All possible Kepler

On the second stage we consider the splitting of this reorbits form a manifold later referred to as the Kepler orbit
sidual degeneracy. This can be done by diagonalizing thepace. Each orbit is characterized by the angular momentum
sum of the operators of the relativistic corrections and thevectorL and the Runge-Lenz vectéy, which are mutually
diamagnetic interaction in the basis set of the spin-orbital®rthogonal.
belonging to the leve(3). The respective basis set is formed Owing to the perturbing influence of the external mag-
by the functions netic field and the relativistic effects, andA will no longer

be constant. Their time dependence will consist of small os-
InIma,)=Rni(r)Yim(6,)u(o,) cillations with the period of the Kepler motion and slow
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accumulating drift, which eventually leads to their large

scale changéthe so called secular evolutipriThe effective
Hamiltonian determining the secular evoluti¢in the first

order of perturbation theo)yis obtained by averaging the
perturbation over a period of the unperturbed Kepler move-

ment[20]; it can be regarded as a functionlofandA char-
acterizing the unperturbed orbit.

The paramagnetic term in the perturbation can be ex-
cluded from consideration by using the frame of reference

that rotates with the Larmor frequency.
Averaging Vs, Vmass andV, over a period we obtain
the effective Hamiltonian

o]
(Vdia)=7

2
z
@(A‘f’l)_ﬁ

—

E2
<Vmasé =
C

3 2

2 1A

2E30,L,
CZ( 1— A2)3/2’

4
<vso> =

H(2) = <Vdia> + <Vmas% + <v50>’

wherew, =H/2c is the Larmor frequencw;E4A2—5A§ is
the well-known Solov’ev integrdl8,9], A=|A|, andA, and
L, arez components ofA andL, respectively.

IV. QUALITATIVE ANALYSIS
OF PHASE TRAJECTORIES

Now we have three integrals of motion. They &rg E

=H®© andH®. The first integral is conserved exactly. The

other two are conserved in the averaged system.

The integralH® can be simplified by dropping the term

(Vep, which is always much smaller thafVmae) in the

semiclassical limit. Therefore, this term is negligible when

analyzing the topology of the phase trajectoribswever,

the exact appearance 0¥, is essential when we state that

(V4o does not violate the symmetry 0¥ ,) and(Viasd).

The conserving propertyd(®) can be replaced by some

other function of{V g2 +{Vmasg, L,, andE. We will use
the integral

324 1

2w 1-AZ

The parameteé=32E*/c?w? is a constant. Therefore we

can say thatA is a function only ofA. The typical level
surfaces of\ for some intermediate value gfare presented

in Fig. 2.A is invariant under rotation about thzeaxis in the
A space, and Fig. 2 shows a sectionfoBpace by an arbi-
trary plane containing the axis.

All possiblevalues ofA are determined by the inequality

2

= 2 A 2 -
Z(A)=(1-A2) -5 —2L%(-E)=0. (5)
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FIG. 2. Level surfaces ofA in A space for¢=5 and
2L§(— E)=0.26. Formal expression fok is defined forA2<1 but
real Kepler orbits exist only foA bounded by inequality5). The
boundaryZ(A)=0 is depicted by thec-like bold line. The level
surfaces can be classified in accordance with their topological struc-
ture and symmetry. There are three types of level surfacés iof
A space:(1) Pairs of symmetric closed striptn the Kepler orbit
space they are represented by pairs of symmetric tori. The corre-
sponding quantum spectrum consists of doublets in the lower part
of the multiplet.(2) Tori. In the Kepler orbit space every such torus
is represented by a pair of symmetric tori. The corresponding quan-
tum spectrum consists of doublets in the upper part of the multiplet.
(3) Closed stripsin the Kepler orbit space every such strip is rep-
resented by one torus that is symmetric by itself. The corresponding
guantum spectrum consists of singlets.

It follows from the non-negativity of the Gram determinant
of the vectorsA, L, ande,, and from the relations

(A-L)=0,
- 1-A2
L FTESE (6)

Equation(5) becomes equality iA, L, ande, are coplanar.

For values ofA in the vicinity of minimum (A ~A )
we have two unconnected surfaces symmetrical with respect
to thexy plane in theA space and two types of phase tra-
jectories, withA,>0 and withA,<0. This is, of course, well
known[8-10], and relativistic effects do not lead to anything
essentially new in this case. The result is the presence of the
extremely narrow doublets of levels of opposite parity in the
lower part of the spectrurtsee Fig. ] provided the relativ-
istic distortion of the quadratic Zeeman spectrum is not too
strong ¢ is not too large

Figure 1 also shows that if relativistic effects are not too
small there is also a doublet structure in tingoerpart of the

multiplet. Corresponding level surfaces &f in Fig. 2 are
tori. Every torus is, of course, a connected set and the pres-
ence of the doublet structure looks a little puzzling.

The explanation is that every Kepler orbit is defined not
only by the vectoA but also by the vectok. It is elemen-
tary to show(see Fig. 3that, for a generié\, there exist two
vectorsL with the samez projectionL, satisfying Eqs(6).
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In the nonrelativistic case th& level surfaces are hyper-
boloids that always cross the boundatyA)=0. Only the
first and the third types of level surfaces are present. When

relativistic corrections gradually grow, the maximum &f
shifts to the allowed region bounded by inequali), and
every surface of the third type becomes a surface of the
second type as soon as itwsolly enclosed in the allowed
region.

V. DISCUSSION

(i) We described two symmetries of the classical system:
the reflection inA space A— — A) and the symmetry shown
in Fig. 3. Let us unify the two symmetries into a group that
consists of four elements. This unified group includes the
roup of space reflection parity as a subgrdtime space
eflectionP=({r,p}—{—r,—p}) in the Kepler orbit space
operates a®=({A,L}—{—A,L})]. On the one hand, the
operationP changesA to —A and therefore it describes the
These two vectors are symmetrical with respect tozhe  doublet structure in the lower part of the spectrum. On the
plane; they merge in the exceptional case when the relatiogther hand,P also changes the mutual orientation of the
(5) turns into equality. _ three vectorsA,L,e,) and therefore it describes the doublet

Thus, each level surface df in the A space that does not structure in the upper part of the spectrum. So, both types of
reach the boundarg(A)=0 gives rise to two isolated sym- doublets can be described in terms of the group consisting of
metrical tori in the Kepler orbit space. Hence the doublettwo elements.
structure in the upper part of the multiplet. (i) But this is not always sufficient. Let us add to the

We should also mention the third type of level surfaces ofsystem a weak electric field parallel to the magnetic field

A corresponding to its middle values. They cross the boundB- To obtain the approximate integral of motion in this case
ary Z(A)=0 where the two branches &f merge. Conse- one must add ta\ the term that is proportional ta,. This

guently there is just one torus in the Kepler orbit space corterm will violate the space reflection symmetry and the dou-
responding to such a surface. Every such torus is symmetriglets in the lower part of the spectrum will be destroyed. But
by itself and does not have a partner. Therefore, the corrdhe symmetry shown in Fig. 3 will remain and the doublet
sponding part of the quantum spectrum consists of singletsstructure in the upper part of the spectrum will be conserved.

FIG. 3. Two symmetric locations of vectarare possible when
vector A is fixed. This may lead to the appearance of a double
structure in the upper part of the quantum spectrum.
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