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A uncertainty relation between energy and time having a simple physical meaning is
rigorously deduced from the principles of quantum mechanics. Some examples of its application

are discussed.

1. Along with the uncertainty relation
between coordinate ¢ and momentum p one
considers in quantum mechanics also the
uncertainty relation between energy and time.
~ The former relation in the form of the
inequality

h
Ag-Ap= 3, 6y

where Ag and Ap are respective standards **
and k—Planck’s constant divided by 2m,
follows, as well known, directly from the
quantum mechanical formalism. As regards
the usual considerations referring to the
so-called Heisenberg’s microscope, to the
determination of velocity by means of the
Doppler effect, etc., their aims consist essen-

tially but in the elucidation of the connection

between the measurements of coordinates and
momenta and the formalism of the quantum
mechanics.

* The manuscript of this paper was almost com-
pletely prepared for publication when Prof. Mandel-
stam suddenly died on November the 27th, 41944.

** Standard denotes the square root of the ave-
rage quadratic deviation from the mean value.

An entirely different situation is met
with in the case of the relation

AH .- AT ~ h, 2

where AH is the standard of energy, AT —
a certain time interval, and the sign ~ denotes
that the left-hand side is at least of the
order of the right-hand one.

In order to establish this relation, one usu-
ally refers, on one hand, to the relation ener-
gy =hv, and, on the other hand, to the tri-
vial relation Av.-AT~1, connecting the “un-
certainty’”” Av in the measurement of tne
frequency of a monochromatic vibration with
the time interval AT, dyring which this
measurement is carried out,

It has, however, more than once been point-
ed out, that in non-relativistic quantum
mechanics it is consistent to consider the
energy as an “observable” in Dirac’s sense,
corresponding to the Hamiltonian of the given
mechanical system. If one accepts this defi-
nition of energy, one cannot, of course, iden-
tify energy with the frequency of a mono-
ehromatic vibration multiplied by k. There-
fore, the above derivation of the relation (2)
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becomes invalid and this relation itself
becomes meaningless,

Apparently no general derivation of the
relation (2) (or of any other similar uncer-
tainty relation referring to energy) from the
fundamental principles of quantum mecha-
nics has yet been given. Instead certain spe-
cial cases were considered, the quantities AH
and AT were defined in some special way,
varying from case to case, and it was shown,
that the quantities thus defined satisfy the
relation (2). ]

2. The object of the present note 18 to
indicate a very general uncertainty relation
for the emergy, which, just as (1), follows
from the quantum formalism if one takes
into account also the Schroedinger equation.

It is based on the following consideration.
It is known that the total energy of an isolat-
ed quantum mechanical system, in distine-
tion to a classical one, does not, in general,
have a definite and constant value. Instead
of this the probability to obtain in a measu-
rement any specified value of the energy of
the system remains constant in time. This
is just the content of the law of conservation
of energy in quantum mechanies.

Energy is exactly determined only in the
special case of a stationary state. But in this
case, as easily seen, all dynamical variables
or, more exactly, their distribution functions,
remain constant in time. In other words,
the definiteness of the total energy of the system
entails the constancy with respect to the time
of all dynamical variables. It can be concluded
that there must exist a general connection
between the dispersion of the total energy of
the system and the time variation of coordi-
nates, momenta, etc. The uncertainty relation
with which we are concerned gives a quanti-
tative formulation of this connection.

Let R and § denote any two quantities
and at same time the corresponding Her-
mitian operators. Following two relations
are known to hold:

AS - AR> < |RS—5R|, 3)

where AS and AR are the standards of the
quantities § end R and the horizontal bar
denotes as usual the quantum mechanical
awverage, and

AR .
h—a;=z(ﬁR—-RH), (4)

where H is the Hamillonian of the system not
depending explicitly on the time.

Putting in (3) &== H we obtain with the
help of (4) the desired uncertainty relation
for the energy in the form of the following
inequality:

. loR
AH - AR = m} el )

This relation gives, thus, the connection bet-
ween the standard AH of the total energy
of an isolated system, the standard AR of
some other dynamical quantity and the rate
of change of the average value of this qua-
tity.

The relation (d) can be put in a some-
what different form. The absolule value of
an integral cannot exceed the integral of the
absolute value of the integrand. Hence integ-
rating (8) from ¢ to ¢-+-A¢ and taking into
account that AH is constant one gets

r Rtsar- Ry

A O éi T o "
H = AR ) (5a)

where the denominator of the right-hand side
denotes the average value of the standard
AR during the time At.

Sometimes (especially in the case of a con-
tinuous spectrum of eigenvalues) it is conve-
nient to refer the variations of the average
value of a dynamical quantity to its stan-
dard. This enables ane in a number of cases
to estimate the effectiveness of these varia-
tions. This can Le illustrated by a somewhat
sirhilar situation which is met with when one
estimates the resolving power of optical in-
struments.

In suchecases it is convenient to introduce a
special notation — A7— for the shortest time,
during which the average value of a certain
quantity is changed by an amount equal to
the standard of this quantity. AT can be called
the standard time.

With the help of this notation one can
rewrite equation (5a) in the following form:

AH AT (5b)

It follows from (Ba) that for the variation
of a quantity it is necessary not only that
AH+#0, but that the average standard of
this quantity should also be different from
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zerg (if* AH=:c). Thus a dynamical quan-
tity cannot wvary if its dispersion remains
equal to zero; this result is obvicus in the
case of a discrete spectrum but not in the case
of a continuous one. It follows further from
(ba) that if at a certain instant the dispersion
of a quantity R vanishes, whereas its average
value does not remain constant, then initial-
ly, Z. e. for small Az, the standard AR varies
much more rapidly than R.

The characteristic feature of the uncertain-
ty relation (5) for the energy consists in
the fact that it contains an arbitrary quantity
R, its physical meaning depending thus on
the choice of this quantity. The neglect of
this circumstance is apparently responsible
for the fact, that different problems to which
the relation (2) has been applied remained
in a number of cases without any mutual
connection,

3. In crder to illustrate the applications
of the relation (5), we shall consider three
examples.

Let us first consider an one-dimensional

wave packet. If we put R==g, then Ris the
centre of gravity of the packet, while AR
can be considered as its average width and
AT as the time of its passage. The relation
(5b) shows, that the precision of the localiza-
tion in time of the passage of the packet
through a point of space depends on the
dispersion of the total energy of the system
and cannot be high if this dispersion is small,
the quantitative relation between AH and AT
being given by (5b).

This example is usually considered in con-
nection with the relation (2), the result stated
being arrived at under the assumption that
the motion takes place in absence of external
forces. Equation (5b) shows, that this result
holds for the motion in an arbitrary potential
field of force. .

The second and the third examples, which
we are going to consider, have also been often
discussed in connection with the relation (2).

* Not infrequently one has to consider states,

the energy standard AH of which is infinite ( for exam-

ple when the energy is distributed according to the
. const . .
dispersion formula W) . Since the rela

tion (5) becomes in such cases meaningless, it would
be desirable to find a more general relation of the
same type as (5).

This discussion was, however, based on new
definitions of AH and AT, so that it has had
no connection whatever with the first example.
In our treatment all the three examples are
particular cases of the relation (5).

Let us consider a system of two degrees
of freedom and let its Hamiltonian be of
the type:

H(q,,9:)=H (9,) +H,(g,) + 1 H,4(9,,9,)-

If p is small orif H,, is of the type of the
interaction energy of two elastically colliding
particles, then one usually speaks of two sys-
tems, each having one degree of freedom,
which are in interaction with one another.

Under these assumptions A, + H,==H; un-

der certain conditions (resonance) H, and H,
may vary considerably with time, whereas
their sum remains approximately constant.
In this case the energy is said to pass from
one system to another, H, being called the
energy of the first and H,— the energy of the
second system.

Let us put R=H,; then (5a) shows that,
in general, the transition of the energy takes
place the slower the smaller the dispersion
of the total energy, or more exactly: the stan-
dard time of the transition of the energy from
one system to the other is not smaller than
] 2AH. ‘

This case can be illustrated by the one-
dimensional collision of two elastic particles
of a vanishing size and of equal mass, one of
which has initially a velocity differing from
zero, with a small dispersion, while the other
is nearly at rest.

The collision process can be approximately
described in the plane ¢, and ¢, (g, and ¢,
are the coordinates of the particles) by the
reflection of a set of waves, limited with
respect both to its length and width, from
a mirror placed at an angle of 45° to the direc-
tion of ¢,, the “wave line”’ of the set being
normal to ¢, and the length and width of
the set being very large compared with the
wave length. The length of the set of waves
will be assumed to be much greater than
its width. Before the collision the wave func-
tion consists of a wave set which is propagated
along ¢, towards the mirror. Until the set
has reach the mirror H,~ 0. Then the front
part of the set is turned by reflection over
an angle of 90°. So long as the time which
hag elapsed from the beginning of the reflect-
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ioa is small, the reflected portion of the set
contains a small number ¢f waves. In other
words, in agreement with the general deduction
from equation (5a) mentioned above, the rate
of change of AH, at this stage is greater than
that of H,, so that AH, is relatively large,
while H, is still small.

With the further propagation of the wave

set the ratio H,/AH, increases until the
whole set is turned in the direction g,. It can
also easily be seen that with the decrease
of the dispersion of the energy of the whole
system, which corresponds, for example, to
an increase of the length of the initial wave
set, all the corresponding time intervals
(in particular the standard time) are increas-
ed, which is also in qualitative agreement
with (5b).

An entirely different meaning has the
well known relation which follows from the
perturbation theory:

(#, +H)—Hy+H)~r, ()

where H , and H,, denote the initial ener-
gies of the interacting systems (or particles)
1 and 2 at the instant ¢ =0, while H, and
H, are their energies at an instant .

The quantity H'=H,-H,, which will
be called the proper energy of the particles,
is by no means equal to the total energy
of the system H=H 4 H,-}pH,,, so that the
relation (6) has nothing to do with the uncer-
tainty AH of the total energy of the system,
which for any isolated system remains con-
stant in time.

Moreover, even if one considers nol the
total energy H, but only the proper energy
of the particles H’ the relation (6), cont-
rary to the widespread opinion, does not
mean that the uncertainty of the proper
energy of the particles decreagses with the
Increase of the time #, during which these
particles interact with each other. In fact,
the probability,- that under the influence
of a perturbation pH,, a transition of the
system from the initial state y, with a pro-
per energy H =H ,+H,, into a state with
a proper energy H'=H,+H, will take place
Eiurmg a time ¢, is proportional to the oscillat-
ing function of time

sin* [(H' — H,) ¢/2h]/(H’ — H.)".

Hence the probability w(e, ¢) that H’ will
at the instant ¢ differ from H, by an amount

not smaller than a fixed quantity e does not
tend to zero as ¢ increases.

The problem can, however, be stated
in a different way. Let us divide the results
of the measurcments of the state of the sys-
tem at the instant ¢ into two classes — class
A, comprising the cases when the system at
the instant ¢ was found in the initial state
Yy, and class B, comprising all other cases.
As t increases, the probability of the cases
A decreases, while the transitions of the sys-
tem into states, which satisfy the law of con-
servation of the proper energy H’, become
the more prevailing the greater ¢ (resonance).
This is just why the pfobability w (e, ) defin-
ed above does not substantially vary with
the time, in spite of the decrease of the
cases A, corresponding to an exact conser-
vation of the proper energy of the par-
ticles.

In other words, if the cases of class A4 are
set aside and the relative probability of dif-
ferent results of the measurements within
the class B (comprising the states of the sys-
tem, which are different from the initial one)
are considered, then this relative probability
Wwg (s, t) of the results of the measurements
of the class B, for which the quantity
(Ho—-H,) at the instant ¢ is not smaller than
a fixed quantity e, will decrease with the
time. Formula (6) establishes the connection
between ¢ and that value e=|(H,+H,)—
— (Hy+H,,)|, for which. the probability
wp (e, ) thus defined becomes comparable
with unity.

We have not succeeded thus far to estab-
lish a connection between this relation (6)
and the uncertainty relation (5)— (b), al-
though we are inclined to believe that such
a connection does exist.

As a third éxample we shall consider the
width of spectral lines or, more generally,
the relation between the lifetime of a given
state ¢, of a system and the uncertainty
AH of the energy of this state.

Let L denote the projection operator eor-
responding to the state ¢, of the system,
defined by the relation

Ly=($9) - &, where (feoqa)=g ooy dx..

One of the eigenvalues of the operator
L is equal to unity, while all others are
equal to zero. Hence

L*=L. 0
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The average value L is equal to the pro-
bability that the system is in the state

0,; evidently L< 1. According to (7)
AL=VZ2~(Z)2=]/T-—(Z)2 . Hence the rela-
tion (5) assumes for the operator L the follow-
ing form *:

sHVI-(Iy=1% g_t’:\ (8)

This unequality contains only one vari-
able quantity L (¢) and its derivative and can
easily be integrated.

If for instance L(0)=1 (i. e. if at the
instant t=0 the system was certain to be
in the state ¢,), then it follows from (8) that
for t=0

—;t-—— arcsin I/f(_t)- < A-I%l . (9)
Hence, for 0 <t nh |2AH
¥ AH -t
L (t) = cos* (—h——) (10)

[if ¢ > nh/2AH, then (9) does not restrict the
value of L (t), since at any rate 0 <L (£) <1].
If « denotes the half life of the state

O, [i. e. L(x)=1/2 if L(0)=1], then (10) yields
the relation

< AH =Tk, (11)

w~la

between ¢ and the uncertainty AH of the
energy of the state 0y, which is somewhat more
precise than the usual one.

It should be mentioned that in a num-
ber of problems referring to measurements,
the relation (5) often enables one to esti-
mate the time interval which under given
conditions is necessary to attain a sufficient
‘precision’’ of the measurements.

4. The uncertainty relation (1) is usually
derived for the so-called “pure case’’, i. e. on
the assumption, that the state of the system

* Since according to (82l and in agreement with
a well known result of the perturbation theory

8L/at=0 if L=1 (or L=0), the exponential law of
decay of a state T = e—-Tt-cannot hold at small t's; ac-
cording to (8) this law can set in only: when ? ex-

'1 h2 2
ceeds the value ty= 7111 <1 T llAIE 2) '
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can be described by a wave function. This
assumption underlies also the derivation of
the relation (5) given above.

However, both (1) and (5) hold also for
the general case of a ‘mixture”. This can
easily be proved as follows.

It is known that the general case of a
mixture

E=3p. ¢ (B dv, (12)

where ¢; are certain functions ‘which can
be considered as wave functions of the pure
cases composing the mixture, while p; are
positive numbers satisfying the condition

El’i:i'

We shall use a horizontal bar without
an index lo denote the average value of a
quantity F for the whole mixture. Let furth-

er Fi=[ o} (Fp) dv. Then according to (12)
R= YpR and (AR)'=(R— Ry'=
=2pimi- (13)
We shall also use the notation (A BR)'=
= mi. According to (13)
(ARy'=p, (B* 28 - B'+ (B)")-

Now the ith term of the sum is not smal-
———1{,
ler than* p; (B— R)* =p; (A:R)*, s0 that

(AR)* = Zp, (OB (14)

Let R and S denote any two quantities and
let

(8:R)* (A:5)* = a3, (15)
then the inequality holds
@Ry as; = (Zpa.)

2
.

(16)

LI ¢/ _I_ollows_,namely from (R— R2>0 that
—gRR+(R)2> (R
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In fact, according to (14) and (15)
(BRY (A8)* = Fp; (A R) - Doy (AS) =
= 3 o (GG o+ (3} +
t,k<i o
+ ) piat.

Noting that the term of the first sum of
the right-hand side with the indices i and %
is not smaller than 2p,p,aa. one immedia-
tely obtains (16).

Let S=¢, R=p. According to (1) and
(15) @;=h/2. It follows from (16) that the
relation (1) remains valid for a mixture,
since AR and AS are the standards of R and
§ referred to the whole mixture.

——

In order to apply (16) to a generaliza.
tion of the relation (5) one must take into
account that all functions ¢, are solutiong
of the same Schroedinger equation. Letting
§==H and comparing (5) with (15) one can put

ht /ORS¢
2 oA
& 4 \_dt ) :

(17)
It can easily be shown that
R [ot="Y) pdR! | 1.

Kence, taking into account (16) and (17,
we see that Lhe uncertainty relation (5) is
valid in the general case of a mixture.

Translated by S. Frenkel.




